随着数据驱动的系统越来越大规模部署,对历史上边缘化的群体的不公平和歧视结果引起了道德问题,这些群体在培训数据中的代表性不足。作为回应,围绕AI的公平和包容性的工作呼吁代表各个人口组的数据集。在本文中,我们对可访问性数据集中的年龄,性别和种族和种族的代表性进行了分析 - 数据集 - 来自拥有的数据集,这些数据集来自拥有的人。残疾和老年人 - 这可能在减轻包含AI注入的应用程序的偏见方面发挥重要作用。我们通过审查190个数据集的公开信息来检查由残疾人来源的数据集中的当前表示状态,我们称这些可访问性数据集为止。我们发现可访问性数据集代表不同的年龄,但具有性别和种族表示差距。此外,我们研究了人口统计学变量的敏感和复杂性质如何使分类变得困难和不一致(例如,性别,种族和种族),标记的来源通常未知。通过反思当前代表残疾数据贡献者的挑战和机会,我们希望我们的努力扩大了更多可能将边缘化社区纳入AI注入系统的可能性。
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
我们考虑在编码晶体材料的周期图上的表示形式学习。与常规图不同,周期图由最小单位单元组成,该单元在3D空间中的常规晶格上重复出现。如何有效编码这些周期结构会带来常规图表学习中不存在的独特挑战。除了E(3)不变外,周期性的图表表示还需要定期不变。也就是说,学到的表示形式应该不变,因为它们是人为强加的。此外,需要明确捕获周期性重复模式,因为不同尺寸和方向的晶格可能对应于不同的材料。在这项工作中,我们提出了一个变压器体系结构,称为Matformer,以进行周期性图表学习。我们的拟合器设计为周期性不变,可以明确捕获重复模式。特别是,Matformer通过有效使用相邻细胞中相同原子之间的几何距离来编码周期模式。多个通用基准数据集的实验结果表明,我们的配合器的表现始终超过基线方法。此外,我们的结果证明了定期不变性和对晶体表示学习的明确重复模式编码的重要性。
translated by 谷歌翻译
我们提出了一个混合工业冷却系统模型,该模型将分析解决方案嵌入多物理模拟中。该模型设计用于增强学习(RL)应用程序,并平衡简单性与模拟保真度和解释性。该模型的忠诚度根据大规模冷却系统的现实世界数据进行了评估。接下来是一个案例研究,说明如何将模型用于RL研究。为此,我们开发了一个工业任务套件,该套件允许指定不同的问题设置和复杂性水平,并使用它来评估不同RL算法的性能。
translated by 谷歌翻译
发现新材料是一项艰巨的挑战,对人类社会的进步至关重要。基于反复试验实验和计算模拟的常规方法是劳动密集型或昂贵的,取决于专家的启发式知识,成功的方式很大。最近,通过从已知材料数据集中学习隐式知识来生成材料的生成设计模型。但是,这些模型要么适用于特定的材料系统,要么由于其未能将物理规则纳入其模型训练过程而较低。在这里,我们提出了一种基于深度学习的物理学指导的晶体生成模型(PGCGM),以实现具有高结构多样性(多达20种不同空间组)的有效生成材料设计。我们模型的高性能表明了其捕获和利用晶体的对称约束和邻居原子之间的成对原子距离约束的能力。使用数据增强和空间原子聚类和合并,我们的PGCGM模型将整体生成有效性的性能提高了700 \%以上,与FTCP相比,FTCP是最先进的结构生成器之一,与45 \%相比,我们的整体生成有效性性能提高了。我们以前的立方体模型。新生成的晶体材料在原子空间分布和组成多样性方面也显示出更高的质量。我们通过密度功能理论(DFT)计算进一步验证了新的晶体结构。 2,000个中的1,869材料成功地优化了,其中39.6%的形成能量为阴性,5.3 \%的能量库船长小于0.25 eV/原子,表明它们的热力学稳定性和潜在的合成性。 1,869个晶体结构已沉积到卡罗来纳州材料数据库\ url {www.carolinamatdb.org}。
translated by 谷歌翻译
基于深度学习的生成模型,如DeepFake已经能够生成惊人的图像和视频。然而,当应用于产生晶体材料结构时,这些模型可能需要显着的变换,其中构建块,物理原子与像素非常不同。天然转移的生成模型倾向于产生不稳定或可合成的大部分物理上不可行的晶体结构。通过利用和添加物理导向的数据增强,丢失函数术语和后处理,我们的深度对抗网络(GAN)基于的生成模型现在可以生成具有更高物理可行性的晶体结构,并展开我们以前的型号,只能创建立方体结构。
translated by 谷歌翻译
产生稳定材料的周期性结构是材料设计界的长期挑战。这个任务很难,因为稳定的材料只存在于原子的所有可能的周期性布置的低维子空间中:1)坐标必须位于量子力学限定的局部能量最小,而2)全球稳定性也需要遵循结构不同原子类型之间的复杂,但特定的粘合偏好。现有方法未能纳入这些因素,并且经常缺乏适当的侵略者。我们提出了一种晶体扩散变分性AutoEncoder(CDVAE),其捕获材料稳定性的物理感应偏差。通过从稳定材料的数据分布中学习,解码器在扩散过程中产生材料,其将原子坐标朝向较低能量状态移动并更新原子类型以满足邻居之间的粘接偏好。我们的模型还明确地编码了周期性边界的交互,尊重置换,转换,旋转和周期性修正。我们在三个任务中显着优于过去的方法:1)重建输入结构,2)产生有效,多样化和现实的材料和3)产生优化特定性质的材料。我们还为更广泛的机器学习界提供了几个标准数据集和评估指标。
translated by 谷歌翻译